首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   3篇
  2020年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   4篇
  1997年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有46条查询结果,搜索用时 93 毫秒
11.
Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the sink are not well known. In this study, we examined latitudinal patterns of interannual variability (IAV) in net ecosystem exchange (NEE) of CO2 based on 163 site-years of eddy covariance data, from 39 northern-hemisphere research sites located at latitudes ranging from ∼29°N to ∼64°N. We computed the standard deviation of annual NEE integrals at individual sites to represent absolute interannual variability (AIAV), and the corresponding coefficient of variation as a measure of relative interannual variability (RIAV). Our results showed decreased trends of annual NEE with increasing latitude for both deciduous broadleaf forests and evergreen needleleaf forests. Gross primary production (GPP) explained a significant proportion of the spatial variation of NEE across evergreen needleleaf forests, whereas, across deciduous broadleaf forests, it is ecosystem respiration (Re). In addition, AIAV in GPP and Re increased significantly with latitude in deciduous broadleaf forests, but AIAV in GPP decreased significantly with latitude in evergreen needleleaf forests. Furthermore, RIAV in NEE, GPP, and Re appeared to increase significantly with latitude in deciduous broadleaf forests, but not in evergreen needleleaf forests. Correlation analyses showed air temperature was the primary environmental factor that determined RIAV of NEE in deciduous broadleaf forest across the North American sites, and none of the chosen climatic factors could explain RIAV of NEE in evergreen needleleaf forests. Mean annual NEE significantly increased with latitude in grasslands. Precipitation was dominant environmental factor for the spatial variation of magnitude and IAV in GPP and Re in grasslands.  相似文献   
12.
The impact of the Pleistocene climate oscillations on the structure of biodiversity in tropical regions remains poorly understood. In this study, the forest refuge theory is examined at the molecular level in Milicia excelsa, a dioecious tree with a continuous range throughout tropical Africa. Eight nuclear microsatellites (nSSRs) and two sequences and one microsatellite from chloroplast DNA (cpDNA) showed a deep divide between samples from Benin and those from Lower Guinea. This suggests that these populations were isolated in separate geographical regions, probably for several glacial cycles of the Pleistocene, and that the nuclear gene pools were not homogenized despite M. excelsa’s wind‐pollination syndrome. The divide could also be related to seed dispersal patterns, which should be largely determined by the migration behaviour of M. excelsa’s main seed disperser, the frugivorous bat Eidolon helvum. Within Lower Guinea, a north–south divide, observed with both marker types despite weak genetic structure (nSSRs: FST = 0.035, cpDNA: GST = 0.506), suggested the existence of separate Pleistocene refugia in Cameroon and the Gabon/Congo region. We inferred a pollen‐to‐seed dispersal distance ratio of c. 1.8, consistent with wide‐ranging gene dispersal by both wind and bats. Simulations in an Approximate Bayesian Computation framework suggested low nSSR and cpDNA mutation rates, but imprecise estimates of other demographic parameters, probably due to a substantial gene flow between the Lower Guinean gene pools. The decline of genetic diversity detected in some Gabonese populations could be a consequence of the relatively recent establishment of a closed canopy forest, which could negatively affect M. excelsa’s reproductive system.  相似文献   
13.
14.
Although the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 mg/kg on Gestation Days 11-17, and reproductive development in male offspring was evaluated. Prenatal administration of EDS compromised fetal testosterone (T) levels, compared with controls. EDS-exposed pups recovered their steroidogenic capacities after birth because T production by hCG-stimulated testis parenchyma from prepubertal male offspring was unchanged. However, prepubertal testes from prenatally exposed males contained seminiferous tubules (STs) devoid of germ cells, indicating a delay in spermatogenesis. In adults, some STs in exposed males still contained incomplete germ cell associations corroborating observed reductions in epididymal sperm reserves, fertility ratios, and litter size. Morphometry revealed an EDS-induced increase in interstitial area and a concomitant decrease in ST area, but stereology revealed an unexpected decrease in the number and size of the LCs per testis in exposed males. Paradoxically, there was an increase in both serum LH and T production by adult testis parenchyma, indicating that the LCs were hyperstimulated. These data demonstrate permanent lesions in LC development and spermatogenesis caused by prenatal exposure in mice. Thus, although adult mouse LCs are insensitive to EDS, EDS appears to have direct action on fetal LCs, resulting in abnormal testis development.  相似文献   
15.
16.
17.

Background

Intermittent preventive treatment of malaria during pregnancy (IPTp) is a key intervention in the national strategy for malaria control in Tanzania. SP, the current drug of choice, is recommended to be administered in the second and third trimesters of pregnancy during antenatal care (ANC) visits. To allow for a proper design of planned scaling up of IPT services in Tanzania it is useful to understand the IPTp strategy's acceptability to health managers, ANC service providers and pregnant women. This study assesses the knowledge, attitudes and practices of these groups in relation to malaria control with emphasis on IPTp services.

Methods

The study was conducted in February 2004, in Korogwe District, Tanzania. It involved in-depth interviews with the district medical officer (DMO), district hospital medical officer in charge and relevant health service staff at two peripheral dispensaries, and separate focus group discussions (FGDs) with district Council Health Management Team members at district level and pregnant women at dispensary and community levels.

Results

Knowledge of malaria risks during pregnancy was high among pregnant women although some women did not associate coma and convulsions with malaria. Contacting traditional healers and self-medication with local herbs for malaria management was reported to be common. Pregnant women and ANC staff were generally aware of SP as the drug recommended for IPTp, albeit some nurses and the majority of pregnant women expressed concern about the use of SP during pregnancy. Some pregnant women testified that sometimes ANC staff allow the women to swallow SP tablets at home which gives a room for some women to throw away SP tablets after leaving the clinic. The DMO was sceptical about health workers' compliance with the direct observed therapy in administering SP for IPTp due to a shortage of clean water and cups at ANC clinics. Intensified sensitization of pregnant women about the benefits of IPTp was suggested by the study participants as an important approach for improving IPTp compliance.

Conclusion

The successful implementation of the IPTp strategy in Tanzania depends on the proper planning of, and support to, the training of health staff and sustained sensitization of pregnant women at health facility and community levels about the benefits of IPTp for the women and their unborn babies.  相似文献   
18.
19.
Spatially heterogeneous ecosystems form a majority of land types in the vast drylands of the globe. To evaluate climate‐change effects on CO2 fluxes in such ecosystems, it is critical to understand the relative responses of each ecosystem component (microsite). We investigated soil respiration (Rs) at four sites along an aridity gradient (90–780 mm mean annual precipitation, MAP) during almost 2 years. In addition, Rs was measured in rainfall manipulations plots at the two central sites where ~30% droughting and ~30% water supplementation treatments were used over 5 years. Annual Rs was higher by 23% under shrub canopies compared with herbaceous gaps between shrubs, but Rs at both microsites responded similarly to rainfall reduction. Decreasing precipitation and soil water content along the aridity gradient and across rainfall manipulations resulted in a progressive decline in Rs at both microsites, i.e. the drier the conditions, the larger was the effect of reduction in water availability on Rs. Annual Rs on the ecosystem scale decreased at a slope of 256/MAP g C m?2 yr?1 mm?1 (r2=0.97). The reduction in Rs amounted to 77% along the aridity gradient and to 16% across rainfall manipulations. Soil organic carbon (SOC) decreased with declining precipitation, and variation in SOC stocks explained 77% of the variation in annual Rs across sites, rainfall manipulations and microsites. This study shows that rainfall manipulations over several years are a useful tool for experimentally predicting climate‐change effects on CO2 fluxes for time scales (such as approximated by aridity gradients) that are beyond common research periods. Rainfall reduction decreases rates of Rs not only by lowering biological activity, but also by drastically reducing shrub cover. We postulate that future climate change in heterogeneous ecosystems, such as Mediterranean and deserts shrublands will have a major impact on Rs by feedbacks through changes in vegetation structure.  相似文献   
20.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号